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ABSTRACT specific density functions, and normal distributions can

When classifying objects with Naive Bayes classifiers, we not mimic e.g. muiti-modal or uniform d|str|b_ut|ons ac-
curately. Hence, a more general form of density functions

are faced with the problem of how to handle continuous at- . ded. G ) ot dels 131 and k | meth
tributes. Common solutions to this problem are discretiz- Is needed. Gaussian mixture models [3] and kernel meth-

ing, or assuming the data to be normally distributed. In ods [2] are popular choices for modeling complex densl-

this paper we take a different approach and instead modefies in classifiers, but in t.his baper we fogus on using his-
the class-specific attribute distributions of Naive Bayes tograms, Wh'Ch f°”‘? a 3|mple- but versqtl]e C'?SS of fun-c-
classifiers with MDL-optimal histogram density functions. tions. A h|stogr_am Is a function that divides Its domam_

We present experimental results, comparing MDL-optimal !nto connected intervals and maps all values in a certain

histograms to Gaussian distributions and histogramswtstrnmtren%aI ntlo a ﬁlndglbeinvaIUﬁa t:]-he cornr:r(]ec:ﬁd I:tde:xglri ?Le
with other methods. commonly cafle S a € supremums a ums

of the intervals are called cut points.
1. INTRODUCTION

Histograms are desirable as density functions because
Consider a botanist trying to infer the species of a flower they can approximate all kinds of functions with unlim-
from measurements such as length, color and shape ofteq precision. No assumptions about the distribution be-
petals. This is the problem of classification. Every object ing approximated need to be made prior learning. For ex-
being classified belongs to one out of a finite set of pos- gmple, a normal distribution will not fit multi-modal data
sible classe€. Objects are represented by their attributes \ye|| while a histogram with proper structure will be able
(z1,...,2n), such as the leaf measurements of the exam-{q assign a high likelinood to the data. But what is meant
ple. Attributes can be numeric or nominal, and numeric by "proper structure”? The number of bins and bin lengths
attributes can be discrete or continuous. Classifiers cang st be selected in such a way that the "correct shape” of
either just give class predictions, or they can estimate theihe data is captured. A histogram with too few or too wide
probabilities of objects belonging to certain classessCla  ping can not mimic real characteristics of the data, and too

sifiers of the latter kind are called statistical classifiers  many or too narrow bins misinterpret random noise as sig-
One of the most popular statistical classifiers is the pificant.

Naive Bayes classifier [1]. Naive Bayes predicts the prob-

ability of an object being in a certain class. To make  Histograms learned from data offer a unified way of
these predictions, Naive Bayes needs conditional prob-handling various types of attributes. Nominal and discrete
ability distributions for each of the attributes. The at- attributes can be handled in the same way as continuous
tribute distributions are conditioned on class values and attributes. Nominal attributes can be given arbitrary non-
are called class-specific distributions. Class-specifie di overlapping discrete values, and treated like true discret
tributions are learned from training data containing objec numeric attributes. The histograms learned from discrete
attributes paired with correct class values. Attributes of data should have bins of equal width, centered on each
an object can be discrete or continuous. For a discreteunique value in the data, thus essentially reproducing the
attribute, the distributions are probability mass funeéio  probability mass functions that would have been used if

If an attribute is continuous, probability density funct®o  the attributes were handled as nominal or discrete.
are needed instead. In this paper we concentrate on learn-

ing density functions for the purpose of classifying con- We use the MDL principle [4] to learn histogram-shaped
tinuously valued data. density functions [5] for Naive Bayes classifiers. These

Perhaps the most common approach to learning den-MDL-optimal histograms have proper structure in the sense
sity functions is to assume that the attribute data is nor- that they are as complex as our data allows, and their pre-
mally distributed [2]. This can be problematic because diction error on future data is worst-case optimal. The
there is no guarantee that the assumption is justified. Pre-method learns both the optimal number of bins and bin
diction accuracy of Naive Bayes relies on accurate class-lengths.



2. THE NAIVE BAYES CLASSIFIER

Classifiers are constructed from training data containing
attributes of objects paired with correct class valuessCla

sifiers either learn models from the training data, or they
can just look for ways to discriminate between different

classes. The Naive Bayes classifier introduced below is a

statistical classifier, and it uses joint probabilities todwal
the training data.

A Bayes classifier is a statistical classifier that uses the
Bayes theorem to calculate the probability of a data point

x = (x1,...,x,) € X™ belonging to some clagse C:
P(x1,...,24]|c)P(c)
P R e 1
(clz1,. @) P(x1,...,xy) (1)

The probabilities needed on the right hand side of the
equation are estimated from training data, and the clas-
sifier’s prediction is the class that maximizes (1). Because
the denominator does not depend@rihe classification
rule can be simplified to

¢ = argmax{P(z1,...,zy|c)P(c)}. (2
Probabilities of discrete random variables are usually

estimated by maximum likelihood estimators counting fre-
quencies of attribute assignments.

P(z1,...,x4c) =
#(X1=x1,..., X, =x,,C=c)ED
( : 1#(C:(:)ED ) 9 (3)
#(C=c)eD
P(c) = ; 4)
D]

where D is training data consisting of pairs of attribute
values and class values.
In the case of continuous random variables, probabil-

contains one thousand data points. Ther@dte= 65536
values to define, but our training data only contains infor-
mation on about.5 percent of the values. In this situa-
tion it can easily happen that every member of the training
set is assigned the same probability, and the classifier just
memorizes the training data. The classifier does not gen-
eralize to unseen cases similar to those in the training set.
A way to alleviate this weakness is to make assump-
tions about independence between variables [1]. A joint
probability can be factorized using the product rule.

P(Xla"'vXn)
= P(Xi|Xs,...,X,)P(Xa,...,Py)
= [[P&XilXif1,.... Xn) (5)

i=1

If it is assumed that all variables are independent of each
other, the joint probability reduces to

P(Xy,... (6)

Given this independence assumption, we can factorize the
class-conditional probability terd®(z1, . . ., z,|c) of the
Bayes classifier (2) and end up with the Naive Bayes clas-
sifier

¢* = argmax{P(c) H P(z;lc)}.

i=1

(7)

The maximum likelihood estimator for the discrete attréout

specific class-conditional probabilities is

#(X;=2;,C=c)eD
#(C=c)eD

P(z;lc) = (8)

ity density functions learned from the data are used instead

of probability mass functions. This may seem problem-
atic, because densities are not probabilities and the proba
bility of a specific value of a continuous random variable
is zero. A density functiorf can be used to measure the
probability of X being on a certain interval: that probabil-
ityis P(z < X < az+A) = [*72 f(x)dx. By the defini-
tion of the derivativelima .o P(z < X <z + A)/A =
f(z). Thus, for some small constatk, P(X = z)

In the case of a continuous attribute, density functions for
P(X,|c) must be learned from data points whéfe = z;
andC = c.

The number of probabilities needed to define a joint
probability of mutually independent variables is consider
ably smaller. The joint probability of sixteen binary at-
tributes is defined bg - 16 probabilities. Because fewer
parameters are used, the functions can model fewer and

f(z) - A. The factorA then appears in the enumerator of less complex distributions. This is both an advantage and
(2) for each class. The factors cancel out when normal-a disadvantage. The advantage is that the classifier is re-
ization is performed, so density functions may be used in sistant to overfitting because the function can learn all of

place of probability mass functions.

Although theoretically optimal, the Bayes classifier
may not perform well in practice. The reason for this is
the joint probability termP (x4, ..., z,|C). The number
of probability values needed to define the joint probability
is exponential in relation ta, and an unrealistic amount
of training data is needed to get estimates for all probabili

its parameters accurately from a practical amount of train-
ing data. The disadvantage is that the classifier can model
only simple distributions.

Even though the Naive Bayes classifier makes strong
assumptions about variable independence, it performs bet-
ter than expected in classification task even if the assumed
independence does not hold. The explanation for this,

ties. This relation between the number of variables and thegiven by Domingos and Pazzani [1], is that although the

difficulty of a problem is called theurse of dimensional-
ity [6]. Let us consider an example situation whefe
consists of sixteen binary attributes and our training data

classifier will not necessarily estimate the class probabil
ties correctly, it may assign the highest probability to the
correct class.



3. MDL MODEL SELECTION by the parameter vectér= (61,..., 6, ), which defines
probability masses of a histogram’s bins. Prediscretipati
of the data is used to simplify the mathematical formula-
tion of parametric complexity because it can be defined as
a sum instead of an integral. Prediscretization introduces
an additional parameter but its effect on stochastic com-
"plexity is a constant that can be ignored in the model se-
lection process.

Another consequence of prediscretization is that the
set of potential cut points is finite:

Minimum description length (MDL) model selection [4]

tries to find a model that enables us to describe our obser
vations with the least amount of bits. We must code ob-
servations with the help of a model, and add a description
of the model to make the whole description decodeable
For a model to be usable in MDL model selection, it must
define a probability distribution over all possible observa
tions. Because models are actually sets of distributions,
we also need a way to summarize all the distributions of a
model with one distribution. For this purpose we use the

Xmazx — Xmin
normalized maximum likelihog®ML) distribution [7]. C = {Xmin +€¢/2+te:t=0,..., - ¢ 1},
. (11)
Prvars (" | M) = P({C"|M) , ) It turns out that parametric complexity for &-bin
Jpex P |IM)dx histogram forn data pointsR} , is exactly the same as
. the parametric complexity of A -valued multinomial [8].
whereP(x"|M) = argnﬁx{P(xﬂm)}. The recursion
The NML distributi(e)n’s description length, stochas- n o _ pn n " (12)
tic complexity for model classM is hx A D
SC(x"|M) = —log Pyarr(x"|M) = holds forK' > 2. The case{ = 1 is alwaysl, and the
caseK = 2is a simple sum
~log P(x"| M) +1og/ P"M).  (10) . .
x/'meXn n n! h,l ! h,2 2
The NML distribution is special in the sense that the ha = Z hylhs! (;) (;) ’ (13)

difference between the description length attained by it fatha=n

and the description length attained by the maximum likeli- 1.k can be computed in tim@(n). Finally, recursion
hood distribution from the model it summarizes s minimax-(lz) is appliedi — 2 times to end up Witk ’_ The time
optimal. The description length can be interpreted as acomplexity of the whole computation@(nhi K).

two-part code. The first term is the negative logarithm The stochastic complexity of histograhis
of the maximum likelihood assigned to the data by the

model class. In statistics, this is called log-likelihoadd K [ en \™
it is a common measure of a model’s capability to fit data. nin k=1 (Lkn)
The second term measures the model’s complexity and is SC(x"|C) = —log Ry (14)

calledparametric complexity
. K
4. LEARNING NA IVE BAYES CLASSIFIERS
= —hi(loge-hy —log Ly -n) + Ry, (15)
As we could see in the previous chapter, when learning k=1
Naive Bayes classifiers, the crucial step is how to estimate\ynerep,, is the number of data points on the interval of
the class-conditional attribute distributions (or deigsitn bin k and Ly, is the length of the same bin.

the continuous case). In the following we first describe An efficient method for computing the first term of

two methods for this, based on the MDL principle, and giochastic complexity is still needed. This involves find-
then in Section 4.2 three alternative methods which will be ing the optimal set of cut points for the stochastic com-

used to validate the usefulness of the MDL-based methodsp|exity criterion. A recursion formula can be used to de-
in the empirical part of the paper (Section 5). vise a dynamic programming algorithm that achieves this,
4.1. MDL based methods as described in [5].

The classifier employing MDL-optimal histogram den-
A brief review of the method for learning MDL-optimal sity functions is referred to asIDLh. MDLh uses the
histograms is given here. Refer to [5] for a detailed ac- ¢|ass-conditional densities defined by the histograms as
count. As mentioned earlier in Section 3, a model must jts "probabilities”. An alternative approach would be to
define a probability distribution over all possible obser- ;g probability masses of bins instead, but this was not
vations. The method achieves this by dividing the inter- explored here.
val where a given histogram is defined to regular sub-  The MDLg classifier takes a different approach and
intervals. The probability mass on a given sub-interval gjscretizes attribute data globally, not separately withi
will be the probability of all data points located on the gach class likMDLh. Attributes of the training data are

sub-interval. _ _ _ _ discretized individually by the following method:
A model M contains all histograms obtainable with a

given set of cut pointg’. Point hypotheses are indexed 1. Learn a MDL-histogram from the attribute’s data.



2. Change the value of every data point on the interval wheren; is the number of data points inside the bin/interval
of thenth bin of the histogram ta. j andn is the total number of data points. In addition,
- ] ] ) the distributions are smoothed using the Laplace method,

A Naive Bayes classifier for discrete attributes (8) isear \here the number of data points inside every bin were in-
from the discretized training data. The discretizing his- -remented by one.
tograms are included in the classifier and classification is  The Gaussiarclassifier uses Gaussian distributions as
done by the following method: its class-specific distributions. Density functions of Gau
sian distributions are of the form

1. Given a data poinfz, .. ., z,) to classify, use the
discretization histograms to derive the discretized _G@y-nd)?
values(zy, ..., Zn,). P(zj|c) = e 2D (18)
V2o

2. Classify using the probability massB4z;|c). Parameters were learned using maximum likelihood esti-

The ¢ parameter used in the pre-discretization phase Mators N
i i - indi |
of histogram learning was estimated from data by finding - in, (19)

the minimum distance between two non-equal data points, N

and assigning as value ebne half of this distance. 1
J— )2

UC - N o 1 Z (‘TZ :LLC) ) (20)

¢ = min{|z; —ajl/2}, Vi, w5 @i # 25 (18)  \yheres, belongs to the set; of values of attribute on

No theoretically sound explanation for this method of as- data points of classand|V;| = N.

signment can be offered here. The method seems to give 5. EMPIRICAL RESULTS
values that are small enough to capture patterns in the
data, without making the search too time consuming. ~ °>-1- Testsetup

Classification tests were run with multiple data sets avail-
able from the UCI machine learning repository [10]. Most
In addition to the two classifiers using MDL-optimal his- of these data sets contained a mix of continuous, discrete
tograms as its context-specific density functions, three ad and nominal attributes. The nominal attributes were given
ditional classifiers were used to give context to the empir- arbitrary non-overlapping numerical values and handled
ical results. Two of the classifiers use histogram density identically with the true numerical attributes. Thirty ten
functions and the third classifier uses the Gaussian densityfold cross-validation runs were done with each data set.
functions. Cross-validation is a method for training and testing
The Shimazakiclassifier [9] uses histogram density classifiers in such a way that available data can be used
functions that are, in a sense, optimal with regards to data.efficiently. When doing:-fold cross-validation the data
Shimazaki histograms are regular, which means that allis randomly divided inta. partitions, and the following
bins are of equal width. An optimal bin width is learned procedure is repeated for each partitjon
from data using the following method:

4.2. Other methods

1. Learn a classifier by using the other partitions as a
1. Divide the rang€r,,in, Tmaz| iINt0 N bins of width training set.
4, and count the number of data poififdrom all n

data points that hit théth bin. 2. Test the accuracy of the learned classifier with

. Report the mean accuracy value of theests.
2. Construct the mean and variance of the number of Classifier accuracy was measured by percentage of cor-
bin hits,d := L 3.0, v := L 3. (6, — 0)2. \er accuracy yPp ge
N £ 7t N i rect classifications and log-sum values. Log-sum is the
3. Compute the cost functiof,(5) — 20— sum of logarithms of probabilit.ies given to the cprrect
(no)? classes. The log-sum measure is useful for selecting clas-
4. Repeat the previous steps while changing the bin Sifiers for decision theoretic tasks. For such tasks it is not
sizes to search fop« that minimizesC,, () only important to predict the correct class, but also to es-
timate class probabilities accurately.

The EWB-10classifier uses ten-bin regular histogram
density functions. The rande;,in, Tmaz] is divided into
ten intervals of equal length. The classification percentage results are documented in

The probability masses of bits= (61,...,0,) are  Figure 1. Standard deviation values were very small for all
estimated USing maximum likelihood estimators in all clas- classifiers and are not documented here. The sets on the
sifiers that employ histogram density functions. The max- x-axis of the figure are ordered in such a way that values
imum likelihood estimator for the mass of bjris for the EWB-10classifier increase. Differences between
classifiers seem to be higher on sets wHeve¢B-10per-

0; = o 17) forms poorly. TheMDLg classifier performs clearly the

5.2. Testresults



best. It achieves highest accuracy on most data sets, and
it is usually second best when it does not win. The Gaus-
sian classifier performs well on some sets, such as Iris,
where the attributes truly are normally distributed. The
three histogram density function based classifiers do not
perform very well, and differences between them are not
large. TheMDLh classifier dominates the group on sets
whereEWB-10performs poorly. Differences in accuracy
diminish on sets whelleWB-10starts to perform stronger,
and mutual ranking between the three classifiers seems to
fluctuate randomly.

The log-sum results are documented in Figure 2. Stan-
dard deviation values were very small for all classifiers
and are not documented here. The sets on the x-axis of
the figure are ordered in such a way that values for the
EWB-10classifier decreaseViDLg is clearly the winner
again. The ranking of classifiers on set by set basis is close
to the ranking on the classification percentage measure.
Only the Gaussian classifier has consistently dropped in
the rankings. Again, the differences between the classi-
fiers diminish a&EWB-10starts obtaining better results.

The classifiers based on MDL-optimal histograms suf-
fer from long learning times. It took over twenty four

hours to run a cross-validation run with tMDLh clas- 6]

sifier on the larger data sets. TMDLg classifier was
even worse, because it had to generate a histogram from a
whole attribute, whereaglDLh could divide an attribute

to separate histograms by class value.

6. CONCLUSIONS

A comparison of several approaches to Naive Bayes clas- (]

sification of data containing continuous attributes was pre
sented. The purpose of the comparison was to assess the
value of using MDL-optimal histograms in Naive Bayes
classifiers.

The straightforward approach of using MDL-optimal  [9]

histograms as density functionglDLh) was not particu-
larly successfulMDLh method attained only marginally
better results when compared with a classifier using regu-

lar ten-bin histograms. On the other hand, a method based10] A. Asuncion and D.J. Newman,

on discretizing data with the help of MDL-optimal his-
tograms MDLQ) achieved quite good results. On data
sets where the attributes were normally distribudB] g
reached accuracies comparable with a classifier using a
model based on normal distributions, and in other cases
it performed better. Unfortunately, the computational re-
quirements of learning MDL-optimal histograms are quite
high, and could pose a problem for some applications.
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