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ABSTRACT

When classifying objects with Naı̈ve Bayes classifiers, we
are faced with the problem of how to handle continuous at-
tributes. Common solutions to this problem are discretiz-
ing, or assuming the data to be normally distributed. In
this paper we take a different approach and instead model
the class-specific attribute distributions of Naı̈ve Bayes
classifiers with MDL-optimal histogram density functions.
We present experimental results, comparing MDL-optimal
histograms to Gaussian distributions and histograms learned
with other methods.

1. INTRODUCTION

Consider a botanist trying to infer the species of a flower
from measurements such as length, color and shape of
petals. This is the problem of classification. Every object
being classified belongs to one out of a finite set of pos-
sible classesC. Objects are represented by their attributes
(x1, . . . , xn), such as the leaf measurements of the exam-
ple. Attributes can be numeric or nominal, and numeric
attributes can be discrete or continuous. Classifiers can
either just give class predictions, or they can estimate the
probabilities of objects belonging to certain classes. Clas-
sifiers of the latter kind are called statistical classifiers.

One of the most popular statistical classifiers is the
Naı̈ve Bayes classifier [1]. Naı̈ve Bayes predicts the prob-
ability of an object being in a certain class. To make
these predictions, Naı̈ve Bayes needs conditional prob-
ability distributions for each of the attributes. The at-
tribute distributions are conditioned on class values and
are called class-specific distributions. Class-specific dis-
tributions are learned from training data containing object
attributes paired with correct class values. Attributes of
an object can be discrete or continuous. For a discrete
attribute, the distributions are probability mass functions.
If an attribute is continuous, probability density functions
are needed instead. In this paper we concentrate on learn-
ing density functions for the purpose of classifying con-
tinuously valued data.

Perhaps the most common approach to learning den-
sity functions is to assume that the attribute data is nor-
mally distributed [2]. This can be problematic because
there is no guarantee that the assumption is justified. Pre-
diction accuracy of Naı̈ve Bayes relies on accurate class-

specific density functions, and normal distributions can
not mimic e.g. multi-modal or uniform distributions ac-
curately. Hence, a more general form of density functions
is needed. Gaussian mixture models [3] and kernel meth-
ods [2] are popular choices for modeling complex densi-
ties in classifiers, but in this paper we focus on using his-
tograms, which form a simple but versatile class of func-
tions. A histogram is a function that divides its domain
into connected intervals and maps all values in a certain
interval to a single value. The connected intervals are
commonly called bins, and the supremums and infimums
of the intervals are called cut points.

Histograms are desirable as density functions because
they can approximate all kinds of functions with unlim-
ited precision. No assumptions about the distribution be-
ing approximated need to be made prior learning. For ex-
ample, a normal distribution will not fit multi-modal data
well, while a histogram with proper structure will be able
to assign a high likelihood to the data. But what is meant
by ”proper structure”? The number of bins and bin lengths
must be selected in such a way that the ”correct shape” of
the data is captured. A histogram with too few or too wide
bins can not mimic real characteristics of the data, and too
many or too narrow bins misinterpret random noise as sig-
nificant.

Histograms learned from data offer a unified way of
handling various types of attributes. Nominal and discrete
attributes can be handled in the same way as continuous
attributes. Nominal attributes can be given arbitrary non-
overlapping discrete values, and treated like true discrete
numeric attributes. The histograms learned from discrete
data should have bins of equal width, centered on each
unique value in the data, thus essentially reproducing the
probability mass functions that would have been used if
the attributes were handled as nominal or discrete.

We use the MDL principle [4] to learn histogram-shaped
density functions [5] for Naı̈ve Bayes classifiers. These
MDL-optimal histograms have proper structure in the sense
that they are as complex as our data allows, and their pre-
diction error on future data is worst-case optimal. The
method learns both the optimal number of bins and bin
lengths.



2. THE NAÏVE BAYES CLASSIFIER

Classifiers are constructed from training data containing
attributes of objects paired with correct class values. Clas-
sifiers either learn models from the training data, or they
can just look for ways to discriminate between different
classes. The Naı̈ve Bayes classifier introduced below is a
statistical classifier, and it uses joint probabilities to model
the training data.

A Bayes classifier is a statistical classifier that uses the
Bayes theorem to calculate the probability of a data point
x = (x1, . . . , xn) ∈ Xn belonging to some classc ∈ C:

P (c|x1, . . . , xn) =
P (x1, . . . , xn|c)P (c)

P (x1, . . . , xn)
(1)

The probabilities needed on the right hand side of the
equation are estimated from training data, and the clas-
sifier’s prediction is the class that maximizes (1). Because
the denominator does not depend onc, the classification
rule can be simplified to

c∗ = argmax
c

{P (x1, . . . , xn|c)P (c)}. (2)

Probabilities of discrete random variables are usually
estimated by maximum likelihood estimators counting fre-
quencies of attribute assignments.

P (x1, . . . , xn|c) =
#(X1=x1,...,Xn=xn,C=c)∈D

#(C=c)∈D
, (3)

P (c) =
#(C = c) ∈ D

|D| , (4)

whereD is training data consisting of pairs of attribute
values and class values.

In the case of continuous random variables, probabil-
ity density functions learned from the data are used instead
of probability mass functions. This may seem problem-
atic, because densities are not probabilities and the proba-
bility of a specific value of a continuous random variable
is zero. A density functionf can be used to measure the
probability ofX being on a certain interval: that probabil-
ity is P (x ≤ X ≤ x+∆) =

∫ x+∆

x
f(x)dx. By the defini-

tion of the derivative,lim∆→0 P (x ≤ X ≤ x + ∆)/∆ =
f(x). Thus, for some small constant∆, P (X = x) =
f(x) · ∆. The factor∆ then appears in the enumerator of
(2) for each class. The factors cancel out when normal-
ization is performed, so density functions may be used in
place of probability mass functions.

Although theoretically optimal, the Bayes classifier
may not perform well in practice. The reason for this is
the joint probability termP (x1, . . . , xn|C). The number
of probability values needed to define the joint probability
is exponential in relation ton, and an unrealistic amount
of training data is needed to get estimates for all probabili-
ties. This relation between the number of variables and the
difficulty of a problem is called thecurse of dimensional-
ity [6]. Let us consider an example situation whereX
consists of sixteen binary attributes and our training data

contains one thousand data points. There are216 = 65536
values to define, but our training data only contains infor-
mation on about1.5 percent of the values. In this situa-
tion it can easily happen that every member of the training
set is assigned the same probability, and the classifier just
memorizes the training data. The classifier does not gen-
eralize to unseen cases similar to those in the training set.

A way to alleviate this weakness is to make assump-
tions about independence between variables [1]. A joint
probability can be factorized using the product rule.

P (X1, . . . , Xn)

= P (X1|X2, . . . , Xn)P (X2, . . . , Pn)

= . . .

=

n
∏

i=1

P (Xi|Xi+1, . . . , Xn) (5)

If it is assumed that all variables are independent of each
other, the joint probability reduces to

P (X1, . . . , Xn) =
n

∏

i=1

P (Xi). (6)

Given this independence assumption, we can factorize the
class-conditional probability termP (x1, . . . , xn|c) of the
Bayes classifier (2) and end up with the Naı̈ve Bayes clas-
sifier

c∗ = argmax
c

{P (c)

n
∏

i=1

P (xi|c)}. (7)

The maximum likelihood estimator for the discrete attribute
specific class-conditional probabilities is

P (xj |c) =
#(Xj = xj , C = c) ∈ D

#(C = c) ∈ D
. (8)

In the case of a continuous attribute, density functions for
P (Xj |c) must be learned from data points whereXj = xj

andC = c.
The number of probabilities needed to define a joint

probability of mutually independent variables is consider-
ably smaller. The joint probability of sixteen binary at-
tributes is defined by2 · 16 probabilities. Because fewer
parameters are used, the functions can model fewer and
less complex distributions. This is both an advantage and
a disadvantage. The advantage is that the classifier is re-
sistant to overfitting because the function can learn all of
its parameters accurately from a practical amount of train-
ing data. The disadvantage is that the classifier can model
only simple distributions.

Even though the Naı̈ve Bayes classifier makes strong
assumptions about variable independence, it performs bet-
ter than expected in classification task even if the assumed
independence does not hold. The explanation for this,
given by Domingos and Pazzani [1], is that although the
classifier will not necessarily estimate the class probabili-
ties correctly, it may assign the highest probability to the
correct class.



3. MDL MODEL SELECTION

Minimum description length (MDL) model selection [4]
tries to find a model that enables us to describe our obser-
vations with the least amount of bits. We must code ob-
servations with the help of a model, and add a description
of the model to make the whole description decodeable.
For a model to be usable in MDL model selection, it must
define a probability distribution over all possible observa-
tions. Because models are actually sets of distributions,
we also need a way to summarize all the distributions of a
model with one distribution. For this purpose we use the
normalized maximum likelihood(NML) distribution [7].

P̄NML(xn|M) =
P̂ (xn|M)

∫

x′∈X
P̂ (x′|M)dx

, (9)

whereP̂ (xn|M) = argmax
m∈M

{P (xn|m)}.

The NML distribution’s description length, orstochas-
tic complexity, for model classM is

SC(xn|M) = − log P̄NML(xn|M) =

− log P̂ (xn|M) + log

∫

x
′n∈Xn

P̂ (x′n|M). (10)

The NML distribution is special in the sense that the
difference between the description length attained by it
and the description length attained by the maximum likeli-
hood distribution from the model it summarizes is minimax-
optimal. The description length can be interpreted as a
two-part code. The first term is the negative logarithm
of the maximum likelihood assigned to the data by the
model class. In statistics, this is called log-likelihood,and
it is a common measure of a model’s capability to fit data.
The second term measures the model’s complexity and is
calledparametric complexity.

4. LEARNING NA ÏVE BAYES CLASSIFIERS

As we could see in the previous chapter, when learning
Naive Bayes classifiers, the crucial step is how to estimate
the class-conditional attribute distributions (or densities in
the continuous case). In the following we first describe
two methods for this, based on the MDL principle, and
then in Section 4.2 three alternative methods which will be
used to validate the usefulness of the MDL-based methods
in the empirical part of the paper (Section 5).

4.1. MDL based methods

A brief review of the method for learning MDL-optimal
histograms is given here. Refer to [5] for a detailed ac-
count. As mentioned earlier in Section 3, a model must
define a probability distribution over all possible obser-
vations. The method achieves this by dividing the inter-
val where a given histogram is defined to regular sub-
intervals. The probability mass on a given sub-interval
will be the probability of all data points located on the
sub-interval.

A modelM contains all histograms obtainable with a
given set of cut pointsC. Point hypotheses are indexed

by the parameter vectorθ = (θ1, . . . , θn), which defines
probability masses of a histogram’s bins. Prediscretization
of the data is used to simplify the mathematical formula-
tion of parametric complexity because it can be defined as
a sum instead of an integral. Prediscretization introduces
an additional parameterǫ, but its effect on stochastic com-
plexity is a constant that can be ignored in the model se-
lection process.

Another consequence of prediscretization is that the
set of potential cut pointsC is finite:

C = {xmin + ǫ/2 + tǫ : t = 0, . . . ,
xmax − xmin

ǫ
− 1},

(11)
It turns out that parametric complexity for aK-bin

histogram forn data points,Rn
hK

, is exactly the same as
the parametric complexity of aK-valued multinomial [8].
The recursion

Rn
hK

= Rn
hK−1

+
n

K − 2
Rn

hk−2 (12)

holds forK > 2. The caseK = 1 is always1, and the
caseK = 2 is a simple sum

Rn
h2

=
∑

h1+h2=n

n!

h1!h2!

(

h1

n

)h1
(

h2

n

)h2

, (13)

which can be computed in timeO(n). Finally, recursion
(12) is appliedK−2 times to end up withRn

hK
. The time

complexity of the whole computation isO(n + K).
The stochastic complexity of histogramC is

SC(xn|C) = − log

∏K

k=1

(

ǫ·hk

Lk·n

)hk

Rn
hK

(14)

=

K
∑

k=1

−hk(log ǫ · hk − log Lk · n) + Rn
hK

, (15)

wherehk is the number of data points on the interval of
bin k andLk is the length of the same bin.

An efficient method for computing the first term of
stochastic complexity is still needed. This involves find-
ing the optimal set of cut points for the stochastic com-
plexity criterion. A recursion formula can be used to de-
vise a dynamic programming algorithm that achieves this,
as described in [5].

The classifier employing MDL-optimal histogram den-
sity functions is referred to asMDLh. MDLh uses the
class-conditional densities defined by the histograms as
its ”probabilities”. An alternative approach would be to
use probability masses of bins instead, but this was not
explored here.

The MDLg classifier takes a different approach and
discretizes attribute data globally, not separately within
each class likeMDLh. Attributes of the training data are
discretized individually by the following method:

1. Learn a MDL-histogram from the attribute’s data.



2. Change the value of every data point on the interval
of thenth bin of the histogram ton.

A Naı̈ve Bayes classifier for discrete attributes (8) is learned
from the discretized training data. The discretizing his-
tograms are included in the classifier and classification is
done by the following method:

1. Given a data point(x1, . . . , xn) to classify, use the
discretization histograms to derive the discretized
values(x̃1, . . . , x̃n).

2. Classify using the probability massesP (x̃j |c).

The ǫ parameter used in the pre-discretization phase
of histogram learning was estimated from data by finding
the minimum distance between two non-equal data points,
and assigning as value ofǫ one half of this distance.

ǫ := min {|xi − xj |/2}, ∀xi, xj xi 6= xj . (16)

No theoretically sound explanation for this method of as-
signment can be offered here. The method seems to give
values that are small enough to capture patterns in the
data, without making the search too time consuming.

4.2. Other methods

In addition to the two classifiers using MDL-optimal his-
tograms as its context-specific density functions, three ad-
ditional classifiers were used to give context to the empir-
ical results. Two of the classifiers use histogram density
functions and the third classifier uses the Gaussian density
functions.

The Shimazakiclassifier [9] uses histogram density
functions that are, in a sense, optimal with regards to data.
Shimazaki histograms are regular, which means that all
bins are of equal width. An optimal bin width is learned
from data using the following method:

1. Divide the range[xmin, xmax] into N bins of width
δ, and count the number of data pointsθi from all n
data points that hit theith bin.

2. Construct the mean and variance of the number of
bin hits,θ̄ := 1

N

∑

i θi, v := 1
N

∑

i (θi − θ̄)2.

3. Compute the cost function,Cn(δ) = 2θ̄−v
(nδ)2 .

4. Repeat the previous steps while changing the bin
sizeδ to search forδ∗ that minimizesCn(δ)

TheEWB-10classifier uses ten-bin regular histogram
density functions. The range[xmin, xmax] is divided into
ten intervals of equal length.

The probability masses of binsθ = (θ1, . . . , θn) are
estimated using maximum likelihood estimators in all clas-
sifiers that employ histogram density functions. The max-
imum likelihood estimator for the mass of binj is

θj :=
nj

n
, (17)

wherenj is the number of data points inside the bin/interval
j andn is the total number of data points. In addition,
the distributions are smoothed using the Laplace method,
where the number of data points inside every bin were in-
cremented by one.

TheGaussianclassifier uses Gaussian distributions as
its class-specific distributions. Density functions of Gaus-
sian distributions are of the form

P (xj |c) =
1√
2πσ

e
−

(xj−µ
j
c)2

2(σ
j
c)2 . (18)

Parameters were learned using maximum likelihood esti-
mators

µj
c =

1

N

N
∑

i

xi, (19)

σj
c =

1

N − 1

∑

i

(xi − µj
c)

2, (20)

wherexi belongs to the setVj of values of attributej on
data points of classc and|Vj | = N .

5. EMPIRICAL RESULTS

5.1. Test setup

Classification tests were run with multiple data sets avail-
able from the UCI machine learning repository [10]. Most
of these data sets contained a mix of continuous, discrete
and nominal attributes. The nominal attributes were given
arbitrary non-overlapping numerical values and handled
identically with the true numerical attributes. Thirty ten-
fold cross-validation runs were done with each data set.

Cross-validation is a method for training and testing
classifiers in such a way that available data can be used
efficiently. When doingn-fold cross-validation the data
is randomly divided inton partitions, and the following
procedure is repeated for each partitionp:

1. Learn a classifier by using the other partitions as a
training set.

2. Test the accuracy of the learned classifier withp.

Report the mean accuracy value of then tests.
Classifier accuracy was measured by percentage of cor-

rect classifications and log-sum values. Log-sum is the
sum of logarithms of probabilities given to the correct
classes. The log-sum measure is useful for selecting clas-
sifiers for decision theoretic tasks. For such tasks it is not
only important to predict the correct class, but also to es-
timate class probabilities accurately.

5.2. Test results

The classification percentage results are documented in
Figure 1. Standard deviation values were very small for all
classifiers and are not documented here. The sets on the
x-axis of the figure are ordered in such a way that values
for the EWB-10classifier increase. Differences between
classifiers seem to be higher on sets whereEWB-10per-
forms poorly. TheMDLg classifier performs clearly the



best. It achieves highest accuracy on most data sets, and
it is usually second best when it does not win. The Gaus-
sian classifier performs well on some sets, such as Iris,
where the attributes truly are normally distributed. The
three histogram density function based classifiers do not
perform very well, and differences between them are not
large. TheMDLh classifier dominates the group on sets
whereEWB-10performs poorly. Differences in accuracy
diminish on sets whereEWB-10starts to perform stronger,
and mutual ranking between the three classifiers seems to
fluctuate randomly.

The log-sum results are documented in Figure 2. Stan-
dard deviation values were very small for all classifiers
and are not documented here. The sets on the x-axis of
the figure are ordered in such a way that values for the
EWB-10classifier decrease.MDLg is clearly the winner
again. The ranking of classifiers on set by set basis is close
to the ranking on the classification percentage measure.
Only the Gaussian classifier has consistently dropped in
the rankings. Again, the differences between the classi-
fiers diminish asEWB-10starts obtaining better results.

The classifiers based on MDL-optimal histograms suf-
fer from long learning times. It took over twenty four
hours to run a cross-validation run with theMDLh clas-
sifier on the larger data sets. TheMDLg classifier was
even worse, because it had to generate a histogram from a
whole attribute, whereasMDLh could divide an attribute
to separate histograms by class value.

6. CONCLUSIONS

A comparison of several approaches to Naı̈ve Bayes clas-
sification of data containing continuous attributes was pre-
sented. The purpose of the comparison was to assess the
value of using MDL-optimal histograms in Naı̈ve Bayes
classifiers.

The straightforward approach of using MDL-optimal
histograms as density functions (MDLh) was not particu-
larly successful.MDLh method attained only marginally
better results when compared with a classifier using regu-
lar ten-bin histograms. On the other hand, a method based
on discretizing data with the help of MDL-optimal his-
tograms (MDLg) achieved quite good results. On data
sets where the attributes were normally distributed,MDLg
reached accuracies comparable with a classifier using a
model based on normal distributions, and in other cases
it performed better. Unfortunately, the computational re-
quirements of learning MDL-optimal histograms are quite
high, and could pose a problem for some applications.
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